Tuning the Activity and Selectivity of Phenylacetylene Hydrosilylation with Triethylsilane in the Liquid Phase over Size Controlled Pt Nanoparticles

نویسندگان

  • Dorina G. Dobó
  • Dániel Sipos
  • András Sápi
  • Koppány L. Juhász
  • Ákos Kukovecz
  • Zoltán Kónya
چکیده

Pt nanoparticles with controlled sizes between 1.6–7.0 nm were anchored onto the surface and pores of SBA-15 silica support. The catalysts were characterized by TEM-ED, BET, XRD, and ICP-MS techniques and were tested in liquid phase hydrosilylation of phenylacetylene with triethylsilane. The activity of the 7.0 nm Pt nanoparticles anchored onto the surface of SBA-15 in hydrosilylation (TOF = 0.107 molecules·site−1·s−1) was ~2 times higher compared to the 5.0 nm Pt/SBA-15 (TOF = 0.049 molecules·site−1·s−1) catalyst and ~10 times higher compared to the 1.6 nm Pt/SBA-15 (TOF = 0.017 molecules·site−1·s−1) catalyst. Regarding the selectivity, bigger nanoparticles produced more vinylsilane-type products (αand β-(E)-products) and less side products (mainly ditriethylsilane, triethyl(1-phenylethyl)silane and triethyl(phenethyl)silane derived likely from the reduction of the vinylsilane products). However, the selectivity towards the β-(E)-triethyl(styryl)silane was higher in the case of 1.6 nm Pt/SBA-15 catalyst compared to 5.0 nm Pt/SBA-15 and 7.0 nm Pt/SBA-15, respectively, which can be attributed to the beneficial effect of the size differences of the Pt nanoparticles as well as the differences of the quality and quantity of Pt/SiO2 interfaces.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Competitive hydrosilylation in carbon nanoreactors: probing the effect of nanoscale confinement on selectivity.

Platinum nanoparticles (PtNP) either imbedded within (PtNP@GNF) or adsorbed on the surface (PtNP/GNF) of hollow graphitised carbon nanofibres catalyse hydrosilylation reactions inside or outside the nanoreactor respectively. Comparison of the products formed using PtNP@GNF and PtNP/GNF reveals that nanoreactors create an environment promoting the formation of aromatic over aliphatic products in...

متن کامل

Rapid H2O2-promoted oxidation of anazolene sodium over the [BMIM]PF=/Pt/γ-Al2O3 nanocatalyst

Highly meso-porous Pt contained γ-Al2O3 nanostructure was prepared by a combined sol gel-pyrolysis method in the presence of polyvinylpyrrolidone and Pluronic p123 as surfactant. The surface of the prepared nanostructure was decorated with 1-Butyl-3-methylimidazolium hexafluorophosphate ([BMM]PF6) ionic liquid to enhance the sorption capacity and prevent the poisoning of the catalytic active si...

متن کامل

Selectivity control in Pt-catalyzed cinnamaldehyde hydrogenation

Chemoselectivity is a cornerstone of catalysis, permitting the targeted modification of specific functional groups within complex starting materials. Here we elucidate key structural and electronic factors controlling the liquid phase hydrogenation of cinnamaldehyde and related benzylic aldehydes over Pt nanoparticles. Mechanistic insight from kinetic mapping reveals cinnamaldehyde hydrogenatio...

متن کامل

Determination of Activity and Selectivity of n-Heptane by Reforming Catalytic Pt-V Supported on gamma-Alumina

Bimetallic Pt-V supported by Gamma-alumina is used to observe the changes of nheptanewhen passed over this catalyst. The Pt concentration was kept constant at0.1wt% while the concentration of the vanadium was 0.5wt%. The activity andselectivity of catalyst have been determined under conditions at 450-500 degreescentigrade and 15-30 attn. The experimental results show that the addition of second...

متن کامل

Architecturally Controlled Bimetallic Nanoparticles for Heterogeneous Catalysis

Title of Dissertation/Thesis: Architecturally Controlled Bimetallic Nanoparticles for Heterogeneous Catalysis Shenghu Zhou, Doctor of Philosophy, 2007 Thesis Directed By: Professor Bryan W. Eichhorn Department of Chemistry and Biochemistry This work develops synthetic methods for architecturally controlled AuPt and CuPt bimetallic nanomaterials. The AuPt heteroaggregate, AuPt alloy spherical na...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2018